3.10 Linear Approximations and Differentials

So far we have seen very difficult functions that have given us problems when trying to find specific y values for different parts of their domains. In the past we have seen that if we zoom in "enough" to a specific point on the function, the graph of the function looks like a tangent line. For that reason we could say that we can find the approximate y-value of a function that is close to $\boldsymbol{x}=\boldsymbol{a}$ by using the tangent line equation for point ($a, f(a)$). The equation for this tangent line is:
$\boldsymbol{y}-\boldsymbol{f}(a)=f^{\prime}(a)(x-a)$ or $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{a})+\boldsymbol{f}^{\prime}(a)(x-a)$ and the approximation $\boldsymbol{y} \approx \boldsymbol{f}(a)+f^{\prime}(a)(x-a)$ is called the linear approximation or tangent line approximation of f at a. The linear function whose graph is the tangent line, that is $L(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{a})+\boldsymbol{f}^{\prime}(\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})$ is called the linearization offat \boldsymbol{a}.

Definition: Linear Approximation to f at \boldsymbol{a}.
Suppose \boldsymbol{f} is differentiable on an interval I containing the point \boldsymbol{a}. The linear approximation to f at \boldsymbol{a} is the linear function $\boldsymbol{L}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{a})+\boldsymbol{f}^{\prime}(\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})$, for \boldsymbol{x} in L.

Example: Find the linear approximation to $f(x)=\sin (x)$ and $x=0$ and use it to approximate $\sin \left(2.5^{\circ}\right)$.

We need to use $L(x)=f(a)+f^{\prime}(a)(x-a)$.
$f(x)=\sin x$ and $x=0 \Rightarrow f(0)=\sin 0=0 \quad f^{\prime}(x)=\cos x \Rightarrow f^{\prime}(0)=\cos 0=1$
$\mathrm{L}(\mathrm{x})=0+1(\mathrm{x}-0)$
$\mathrm{L}(\mathrm{x})=\mathrm{x}$ (this is the linear approximation)
Now convert 2.5° to radians. $\quad \Rightarrow \quad 2.5^{\circ} \cdot \frac{\pi}{180} \approx 0.04363$ radians
Therefore, $\sin \left(2.5^{\circ}\right) \approx L\left(0.04363 \approx \mathbf{0 . 0 4 3 6 3}\right.$. Now use your calculator and approximate $\sin \left(2.5^{\circ}\right)$. How close is it to the linear approximation?

Example: Find the linear approximation function L to the function at point \boldsymbol{a} given $f(x)=\boldsymbol{e}^{-x}$, and $\boldsymbol{a}=$ $\ln (2)$.

Use $L(x)=f(a)+f^{\prime}(a)(x-a)$

$$
f(a)=e^{-\ln 2}=\frac{1}{e^{\ln 2}}=\frac{1}{2} \quad f^{\prime}(a)=-e^{\ln 2}=-\frac{1}{e^{\ln 2}}=-\frac{1}{2}
$$

$L(x)=f(a)+f^{\prime}(a)(x-a) \Rightarrow L(x)=\frac{1}{2}-\frac{1}{2}(x-\ln 2)$

DIFFERENTIALS

We can also express a linear approximation in the terminology and notation of differentials. If $y=f(x)$ is a differential, then we could say:
$\frac{d y}{d x}=f^{\prime}(x)$ assuming $d x \neq 0$
$d y=f^{\prime}(x) \cdot d x$ (This is called the differential) Notice we can determine the value of $d y$ if we are given $\boldsymbol{d} \boldsymbol{x}$ and \boldsymbol{x}, where \boldsymbol{x} is a value in the domain of \boldsymbol{f}. Graphically, this is what we have:

Notice the corresponding change in y is $\Delta y=f(x+\Delta x)-f(x)$
$d y$ represents the amount that the tangent line rises or falls, whereas Δy represents the amount that the curve, $y=f(x)$ rises or falls when x changes by an amount $d x$. $\boldsymbol{d} \boldsymbol{x}$ always $=\Delta \boldsymbol{x}$ but $\boldsymbol{d y}$ is just an approximation of Δy.

Example: Find the differential $d y$ and evaluate $d y$ for the given values of \boldsymbol{x} and $d x$.
$y=e^{\frac{x}{10}}, x=0, \quad d x=0.1$

We have that the differential is $d y=f^{\prime}(x) \cdot d x$
$f^{\prime}(x)=e^{\frac{x}{10}} \cdot \frac{1}{10}=\frac{e^{\frac{x}{10}}}{10}$

Thus $d y=\frac{e^{\frac{x}{10}}}{10} \cdot d x$ This is the differential, now evaluate $d y$.
$d y=\frac{e^{\frac{0}{10}}}{10}(0.1)=\frac{\mathbf{1}}{\mathbf{1 0 0}}$
Example: Use the notation of differentials to write the approximate change in $f(x)=3 \cos ^{2}(x)$ given a small change $d x$.

Find the differential $d y, d y=f^{\prime}(x) d x$

$$
\begin{aligned}
f^{\prime}(x) & =3 \cdot 2 \cos x \cdot-\sin x \\
& =-3 \cdot 2 \sin x \cos x \quad \text { (Use the double angle identity) } \\
& =-3 \sin 2 x
\end{aligned}
$$

Thus $d y=-3 \sin (2 x) d x$

The interpretation is that a small change $d \boldsymbol{x}$ in the independent variable \boldsymbol{x} produces an approximate change in the dependent variable of $d y=-3 \boldsymbol{\operatorname { s i n }}(2 x) d x$ in y.

